
NAME
sudo.conf - configuration for sudo front end

DESCRIPTION
The sudo.conf file is used to configure the sudo front end. It specifies the security policy and I/O

logging plugins, debug flags as well as plugin-agnostic path names and settings.

The sudo.conf file supports the following directives, described in detail below.

Plugin a security policy or I/O logging plugin

Path a plugin-agnostic path

Set a front end setting, such as disable_coredump or group_source

Debug debug flags to aid in debugging sudo, sudoreplay, visudo, and the sudoers plugin.

The pound sign (‘#’) is used to indicate a comment. Both the comment character and any text after it, up

to the end of the line, are ignored.

Long lines can be continued with a backslash (‘\’) as the last character on the line. Note that leading

white space is removed from the beginning of lines even when the continuation character is used.

Non-comment lines that don’t begin with Plugin, Path, Debug, or Set are silently ignored.

The sudo.conf file is always parsed in the "C" locale.

Plugin configuration
sudo supports a plugin architecture for security policies and input/output logging. Third parties can

develop and distribute their own policy and I/O logging plugins to work seamlessly with the sudo front

end. Plugins are dynamically loaded based on the contents of sudo.conf.

A Plugin line consists of the Plugin keyword, followed by the symbol_name and the path to the dynamic

shared object that contains the plugin. The symbol_name is the name of the struct policy_plugin or

struct io_plugin symbol contained in the plugin. The path may be fully qualified or relative. If not fully

qualified, it is relative to the directory specified by the plugin_dir Path setting, which defaults to

/usr/local/libexec/sudo. In other words:

Plugin sudoers_policy sudoers.so

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

is equivalent to:

Plugin sudoers_policy /usr/local/libexec/sudo/sudoers.so

If the plugin was compiled statically into the sudo binary instead of being installed as a dynamic shared

object, the path should be specified without a leading directory, as it does not actually exist in the file

system. For example:

Plugin sudoers_policy sudoers.so

Starting with sudo 1.8.5, any additional parameters after the path are passed as arguments to the plugin’s

open function. For example, to override the compile-time default sudoers file mode:

Plugin sudoers_policy sudoers.so sudoers_mode=0440

The same dynamic shared object may contain multiple plugins, each with a different symbol name. The

file must be owned by uid 0 and only writable by its owner. Because of ambiguities that arise from

composite policies, only a single policy plugin may be specified. This limitation does not apply to I/O

plugins.

If no sudo.conf file is present, or if it contains no Plugin lines, the sudoers plugin will be used as the

default security policy and for I/O logging (if enabled by the policy). This is equivalent to the

following:

Plugin sudoers_policy sudoers.so

Plugin sudoers_io sudoers.so

For more information on the sudo plugin architecture, see the sudo_plugin(8) manual.

Path settings
A Path line consists of the Path keyword, followed by the name of the path to set and its value. For

example:

Path noexec /usr/local/libexec/sudo/sudo_noexec.so

Path askpass /usr/X11R6/bin/ssh-askpass

The following plugin-agnostic paths may be set in the /etc/sudo.conf file:

askpass The fully qualified path to a helper program used to read the user’s password when no

terminal is available. This may be the case when sudo is executed from a graphical (as

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

opposed to text-based) application. The program specified by askpass should display the

argument passed to it as the prompt and write the user’s password to the standard output.

The value of askpass may be overridden by the SUDO_ASKPASS environment variable.

noexec The fully-qualified path to a shared library containing dummy versions of the execl(),
execle(), execlp(), exect(), execv(), execve(), execvP(), execvp(), execvpe(), fexecve(),

popen(), posix_spawn(), posix_spawnp(), and system() library functions that just return an

error. This is used to implement the noexec functionality on systems that support

LD_PRELOAD or its equivalent. The default value is:

/usr/local/libexec/sudo/sudo_noexec.so.

plugin_dir

The default directory to use when searching for plugins that are specified without a fully

qualified path name. The default value is /usr/local/libexec/sudo.

sesh The fully-qualified path to the sesh binary. This setting is only used when sudo is built with

SELinux support. The default value is /usr/local/libexec/sudo/sesh.

Other settings
The sudo.conf file also supports the following front end settings:

disable_coredump

Core dumps of sudo itself are disabled by default to prevent the disclosure of potentially

sensitive information. To aid in debugging sudo crashes, you may wish to re-enable core

dumps by setting "disable_coredump" to false in sudo.conf as follows:

Set disable_coredump false

All modern operating systems place restrictions on core dumps from setuid processes like

sudo so this option can be enabled without compromising security. To actually get a sudo
core file you will likely need to enable core dumps for setuid processes. On BSD and Linux

systems this is accomplished in the sysctl command. On Solaris, the coreadm command is

used to configure core dump behavior.

This setting is only available in sudo version 1.8.4 and higher.

group_source

sudo passes the invoking user’s group list to the policy and I/O plugins. On most systems,

there is an upper limit to the number of groups that a user may belong to simultaneously

(typically 16 for compatibility with NFS). On systems with the getconf(1) utility, running:

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

getconf NGROUPS_MAX

will return the maximum number of groups.

However, it is still possible to be a member of a larger number of groups--they simply won’t

be included in the group list returned by the kernel for the user. Starting with sudo version

1.8.7, if the user’s kernel group list has the maximum number of entries, sudo will consult the

group database directly to determine the group list. This makes it possible for the security

policy to perform matching by group name even when the user is a member of more than the

maximum number of groups.

The group_source setting allows the administrator to change this default behavior. Supported

values for group_source are:

static Use the static group list that the kernel returns. Retrieving the group list this way

is very fast but it is subject to an upper limit as described above. It is "static" in

that it does not reflect changes to the group database made after the user logs in.

This was the default behavior prior to sudo 1.8.7.

dynamic Always query the group database directly. It is "dynamic" in that changes made

to the group database after the user logs in will be reflected in the group list. On

some systems, querying the group database for all of a user’s groups can be time

consuming when querying a network-based group database. Most operating

systems provide an efficient method of performing such queries. Currently, sudo
supports efficient group queries on AIX, BSD, HP-UX, Linux and Solaris.

adaptive Only query the group database if the static group list returned by the kernel has

the maximum number of entries. This is the default behavior in sudo 1.8.7 and

higher.

For example, to cause sudo to only use the kernel’s static list of groups for the user:

Set group_source static

This setting is only available in sudo version 1.8.7 and higher.

max_groups

The maximum number of user groups to retrieve from the group database. Values less than

one will be ignored. This setting is only used when querying the group database directly. It

is intended to be used on systems where it is not possible to detect when the array to be

populated with group entries is not sufficiently large. By default, sudo will allocate four

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

times the system’s maximum number of groups (see above) and retry with double that

number if the group database query fails. However, some systems just return as many entries

as will fit and do not indicate an error when there is a lack of space.

This setting is only available in sudo version 1.8.7 and higher.

probe_interfaces

By default, sudo will probe the system’s network interfaces and pass the IP address of each

enabled interface to the policy plugin. This makes it possible for the plugin to match rules

based on the IP address without having to query DNS. On Linux systems with a large

number of virtual interfaces, this may take a non-negligible amount of time. If IP-based

matching is not required, network interface probing can be disabled as follows:

Set probe_interfaces false

This setting is only available in sudo version 1.8.10 and higher.

Debug flags
sudo versions 1.8.4 and higher support a flexible debugging framework that can help track down what

sudo is doing internally if there is a problem.

A Debug line consists of the Debug keyword, followed by the name of the program (or plugin) to debug

(sudo, visudo, sudoreplay, sudoers), the debug file name and a comma-separated list of debug flags. The

debug flag syntax used by sudo and the sudoers plugin is subsystem@priority but a plugin is free to use

a different format so long as it does not include a comma (‘,’).

For example:

Debug sudo /var/log/sudo_debug all@warn,plugin@info

would log all debugging statements at the warn level and higher in addition to those at the info level for

the plugin subsystem.

As of sudo 1.8.12, multiple Debug entries may be specified per program. Older versions of sudo only

support a single Debug entry per program. Plugin-specific Debug entries are also supported starting

with sudo 1.8.12 and are matched by either the base name of the plugin that was loaded (for example

sudoers.so) or by the plugin’s fully-qualified path name. Previously, the sudoers plugin shared the same

Debug entry as the sudo front end and could not be configured separately.

The following priorities are supported, in order of decreasing severity: crit, err, warn, notice, diag, info,

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

trace and debug. Each priority, when specified, also includes all priorities higher than it. For example, a

priority of notice would include debug messages logged at notice and higher.

The priorities trace and debug also include function call tracing which logs when a function is entered

and when it returns. For example, the following trace is for the get_user_groups() function located in

src/sudo.c:

sudo[123] -> get_user_groups @ src/sudo.c:385

sudo[123] <- get_user_groups @ src/sudo.c:429 := groups=10,0,5

When the function is entered, indicated by a right arrow ‘->’, the program, process ID, function, source

file and line number are logged. When the function returns, indicated by a left arrow ‘<-’, the same

information is logged along with the return value. In this case, the return value is a string.

The following subsystems are used by the sudo front-end:

all matches every subsystem

args command line argument processing

conv user conversation

edit sudoedit

event event subsystem

exec command execution

main sudo main function

netif network interface handling

pcomm communication with the plugin

plugin plugin configuration

pty pseudo-tty related code

selinux SELinux-specific handling

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

util utility functions

utmp utmp handling

The sudoers(5) plugin includes support for additional subsystems.

FILES
/etc/sudo.conf sudo front end configuration

EXAMPLES
#

Default /etc/sudo.conf file

#

Format:

Plugin plugin_name plugin_path plugin_options ...

Path askpass /path/to/askpass

Path noexec /path/to/sudo_noexec.so

Debug sudo /var/log/sudo_debug all@warn

Set disable_coredump true

#

The plugin_path is relative to /usr/local/libexec/sudo unless

fully qualified.

The plugin_name corresponds to a global symbol in the plugin

that contains the plugin interface structure.

The plugin_options are optional.

#

The sudoers plugin is used by default if no Plugin lines are

present.

Plugin sudoers_policy sudoers.so

Plugin sudoers_io sudoers.so

#

Sudo askpass:

#

An askpass helper program may be specified to provide a graphical

password prompt for "sudo -A" support. Sudo does not ship with

its own askpass program but can use the OpenSSH askpass.

#

Use the OpenSSH askpass

#Path askpass /usr/X11R6/bin/ssh-askpass

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

#

Use the Gnome OpenSSH askpass

#Path askpass /usr/libexec/openssh/gnome-ssh-askpass

#

Sudo noexec:

#

Path to a shared library containing dummy versions of the execv(),

execve() and fexecve() library functions that just return an error.

This is used to implement the "noexec" functionality on systems that

support C<LD_PRELOAD> or its equivalent.

The compiled-in value is usually sufficient and should only be

changed if you rename or move the sudo_noexec.so file.

#

#Path noexec /usr/local/libexec/sudo/sudo_noexec.so

#

Core dumps:

#

By default, sudo disables core dumps while it is executing

(they are re-enabled for the command that is run).

To aid in debugging sudo problems, you may wish to enable core

dumps by setting "disable_coredump" to false.

#

#Set disable_coredump false

#

User groups:

#

Sudo passes the user’s group list to the policy plugin.

If the user is a member of the maximum number of groups (usually 16),

sudo will query the group database directly to be sure to include

the full list of groups.

#

On some systems, this can be expensive so the behavior is configurable.

The "group_source" setting has three possible values:

static - use the user’s list of groups returned by the kernel.

dynamic - query the group database to find the list of groups.

adaptive - if user is in less than the maximum number of groups.

use the kernel list, else query the group database.

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

#

#Set group_source static

SEE ALSO
sudoers(5), sudo(8), sudo_plugin(8)

HISTORY
See the HISTORY file in the sudo distribution (http://www.sudo.ws/history.html) for a brief history of

sudo.

AUTHORS
Many people have worked on sudo over the years; this version consists of code written primarily by:

Todd C. Miller

See the CONTRIBUTORS file in the sudo distribution (http://www.sudo.ws/contributors.html) for an

exhaustive list of people who have contributed to sudo.

BUGS
If you feel you have found a bug in sudo, please submit a bug report at http://bugzilla.sudo.ws/

SUPPORT
Limited free support is available via the sudo-users mailing list, see

http://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER
sudo is provided "AS IS" and any express or implied warranties, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose are disclaimed. See the

LICENSE file distributed with sudo or http://www.sudo.ws/license.html for complete details.

SUDO(5) File Formats Manual SUDO(5)

Sudo 1.8.15 September 28, 2015 Sudo 1.8.15

